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1. Introduction

There are many ways to motivate need of supersymmetries — while one is, needless to say,

a solution to the loop-level hierarchy problem, others include a strong controllability of the

theories. Renowned Seiberg’s duality [1] among N = 1 supersymmetric gauge theories is

a famous example. Furthermore, with the supersymmetries, analysis via string/M theo-

ries are accessible from field theories. However, the introduction of the supersymmetries

in realistic field theory models always accompanies the problem of how to break them at

low energy. In this sense, it should be celebrated that Intriligator, Seiberg and Shih [2]

found recently that one of the simplest supersymmetric field theories, the supersymmetric

QCD (SQCD), admits supersymmetry-breaking meta-stable vacua via the Seiberg’s duality

(some following works include [3 – 7]). With the help of known realization of the duality in

string theories [8] a la Hanany-Witten setup [9] (see [10] for a review), the brane configu-

ration corresponding to the meta-stable vacua have been identified [3 – 5], even though the

vacua break the supersymmetries.
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Since this provides a new mechanism to break the supersymmetries, it is important

to study classical/quantum properties of this newly found vacua. In particular, the struc-

ture of the classical moduli space is directly related to a possible existence of solitons in

the vacua. Any soliton, if existent, is quite relevant to particle phenomenology, partially

through cosmological evolution and phase transition of the universe.

In this article, we examine the possible existence of solitons, in the supersymmetry-

breaking meta-stable vacua. Since the vacua are provided by a Seiberg-dual (called “mag-

netic” or “macroscopic”) theory of the SQCD, field-theoretical facilitation is concrete

enough to determine topology of the moduli space. We find that when the gauge group of

the SQCD is SU(Nc), homotopy groups of the moduli space are trivial, thus any soliton

does not appear in the vacua.

When the gauge group is U(Nc), mainly because of its diagonal U(1) sector, the vacua

admit vortex strings. With a help of the brane realization of the meta-stable vacua [3 – 5]

(see also [6]), the existence of the vortex strings is predicted from brane configurations, as

a generalization of Hanany-Tong set-up [11] where vortex strings in N = 2 gauge theo-

ries are identified with D2-branes in Hanany-Witten brane configurations. The predicted

properties such as tensions, supersymmetries, and species of strings, can be examined by

direct construction of vortex string solutions in the magnetic theory of the SQCD. It is

noteworthy that the vortex strings are non-BPS (≡ supersymmetry-breaking). Eventually

the magnetic theory is found to be a gauge theory with flavor fields allowing so-called

semilocal vortex strings [13], which are our non-BPS vortex strings. Because they are

topological, the lifetime of the corresponding strings in the SQCD is of the same order as

the meta-stable vacua. When the quark masses of the original SQCD split, various kinds

of vortex strings appear with different tensions.

For SO gauge groups, we find similar semilocal strings only when Nc = Nf + 2 where

the dual gauge group is SO(2) ∼ U(1). For generic Nf and Nc we find Z2 solitonic strings.

The organization of the paper is as follows. After reviewing the supersymmetry-

breaking meta-stable vacua of the magnetic SQCD [2], we examine the homotopy groups

of the moduli space of the vacua in section 2. Possible existence of solitons is studied

accordingly. Then in section 3, we obtain a brane configuration of the vortex strings in

the meta-stable vacua, following the brane realization of the meta-stable vacua [3 – 5] and

also that of the solitonic strings in N = 2 gauge theories [11]. In section 4, we explicitly

construct the vortex string solutions in the magnetic SQCD, and study their stability to

see the consistency with the brane picture. Some discussions on renormalization groups,

relevance to cosmologies, and detailed correspondence to the brane picture are presented

in section 5, with a brief conclusion.

2. Solitons in magnetic theory of SQCD

2.1 Meta-stable vacua of SQCD

First, we briefly summarize the main results of Intriligator, Seiberg and Shih [2], the

supersymmetry-breaking meta-stable vacua of the magnetic theory of the SQCD.
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In [2], N = 1 4d supersymmetric SU(Nc) Yang-Mills with Nf massive flavors Q and Q̃

(SQCD) was shown to have meta-stable supersymmetry-breaking vacua in the free magnetic

range Nc + 1 ≤ Nf ≤ 3
2Nc, with sufficiently small quark masses. Along the analysis done

in [2], we will work in this range. The dual SU(N) (N = Nf−Nc) theory is infra-red free and

its low energy effective theory is described by the Kähler potential and the superpotential

K = Trc

[
qe−V q† + q̃†eV q̃

]
+ Trf

[
M †M

]
, (2.1)

W = hTrc [qMq̃] − hµ2TrfM. (2.2)

Here M is the meson field and q, q̃ are the dual quarks whose charges are summarized

below. (We omit the U(1)R charge in the table.)

SU(N) SU(Nf )V U(1)B
M[Nf×Nf ] 1 adj. 0

q[N×Nf ] ¤ ¤̄ 1

q̃[Nf×N ] ¤̄ ¤ −1

The bosonic part of the Lagrangian of the “macroscopic theory” which we call magnetic

theory is of the form

L = Trc

[
− 1

2g2
FµνFµν −DµqDµq† −Dµq̃†Dµq̃

]
− Trf

[
∂µM †∂µM

]
− V (2.3)

with a scalar potential V = VF + VD given by1

VF = |h2|Trf

[∣∣q̃q − µ21Nf

∣∣2
]

+ |h2|Trc

[
|qM |2 +

∣∣∣q̃†M †
∣∣∣
2
]

, (2.4)

VD =
g2

4
Trc

[(
qq† − q̃†q̃

)2
]
− g2

8

(
Trcqq

† − Trcq̃
†q̃

)2
. (2.5)

Supersymmetric configuration is then given by

q̃q = µ21Nf
, qM = 0, q̃†M † = 0, qq† − q̃†q̃ = 0. (2.6)

The first condition cannot be satisfied when N < Nf because the rank N of the matrix

q̃q is less than Nf (rank condition) [2]. A configuration minimizing the potential is of the

form

M =

(
0N×N 0N×(Nf−N)

0(Nf−N)×N M0

)
,

q†

µ∗
=

q̃

µ
=

(
1N

0(Nf−N)×N

)
, (2.7)

where M0 is an arbitrary Nf − N by Nf − N matrix. Except for the first condition in

equation (2.6), all the other conditions are satisfied. So the vacuum energy is given by

V = |hµ2|2(Nf − N) > 0, (2.8)

1When the gauge group is U(N) instead of the SU(N) (i.e. when we gauge the U(1)B with its coupling

put equal to that of the SU(N)), the second term in VD is not necessary.
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and thus the vacuum spontaneously breaks the N = 1 supersymmetry. We will see this

supersymmetry breaking from the view point of the D-brane configuration in section 3.1.

Notice that this vacuum shows color-flavor locking which is invariant under the

SU(N)c+f global transformation,

M → UMU † = M, q → gqU † = q, q̃ → Uq̃g† = q̃. (2.9)

Here M, q, q̃ are given in (2.7), g ∈ SU(N) is a global rotation of the gauge group SU(N),

and U is an element of SU(Nf ) defined by

U =

(
g

1Nf−N

)
∈ SU(Nf ). (2.10)

The supersymmetry-breaking vacua given in (2.7) have several flat directions. A part

of them are truly massless Nambu-Goldstone modes associated with the spontaneously

broken global symmetries, while the others are classical pseudo-moduli fields which acquires

positive masses by one-loop contributions to the effective potential [2]. The vacuum of the

potential is then M0 = 0 and the Nambu-Goldstone modes are generated by

q = (µ1N , 0) → ĝ (µ1N , 0) Û †, (2.11)

where ĝ ∈ SU(N) and Û ∈ U(Nf ) ∼ SU(Nf )×U(1)B . We will study in detail the vacuum

manifold of this magnetic theory in the following subsections.

In the SQCD above, the masses of the quarks are chosen to be the same, which are

proportional to µ2. We can introduce different mass for each quark, by replacing the

superpotential (2.2) by

W = hTrc [qMq̃] − hTrf [mM ] , (2.12)

where m = diag(m1,m2, . . . ,mNf
), and mi is the quark mass of the SQCD times a dy-

namical scale (−Λ̂), see [2]. We can bring mi real and positive classically, and choose

m1 ≥ m2 ≥ · · · ≥ mNf
. When all the masses are non-vanishing, the supersymmetry is

broken at the vacuum. However, when mN+1 = · · · = mNf
= 0, the rank condition is satis-

fied, and the supersymmetry is unbroken at the vacuum although the vacuum expectation

value is the same as that given in equation (2.7). Notice that, by the mass arrangement

m = diag(µ2, . . . , µ2

︸ ︷︷ ︸
N

, 0, . . . , 0︸ ︷︷ ︸
Nf−N

), the flavor symmetry SU(Nf ) is explicitly broken down to

SU(N).

2.2 Topological solitons

Let us study the possible existence of the topological solitons in the meta-stable vacua in

the magnetic theory. If there are topological solitons, the corresponding solitons in the

meta-stable vacua in the SQCD have lifetime of the order of the lifetime of the meta-stable

vacua.

We also study the moduli space Mvac of the meta-stable vacua and the topological

solitons in the nonlinear sigma model whose target spaces is the moduli space. These
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nonlinear sigma models are obtained as the effective action for the energy lower than the

mass scale of the pseudo Nambu-Goldstone modes. It is important to note that there is no

obstruction to continuously deform the configuration corresponding to the nonlinear sigma

model soliton to the meta-stable vacua, in the magnetic theory. Moreover, this deformation

is not related to the true supersymmetric vacua and is closed in the region near the meta-

stable vacua. Thus the nonlinear sigma model solitons have a relatively short lifetime of

the order of the scale given by the mass of the pseudo Nambu-Goldstone modes (if they

do not correspond to any topological soliton of the magnetic theory of the SQCD).

In advance, let us list our results here. In the magnetic theory of the SQCD with

the gauge group SU(Nc), the gauge group SU(N) is completely broken at the meta-stable

vacuum. Since πk(SU(N)) = 0 for 0 ≤ k ≤ 2, we expect there is no topological soliton

except (constrained) instantons in its Euclideanized theory. In fact, we find the homotopy

groups of the moduli space of vacua, as

π0(Mvac) = π1(Mvac) = π2(Mvac) = 0. (2.13)

Thus we expect no topological solitons (global monopole / vortex string / domain wall)

in the meta-stable vacua, and there is no string or domain wall even in the sigma model

which is the low energy effective theory.2

In order to have non-trivial solitons, we need to consider U(Nc) gauge group instead of

the SU(Nc), in other words, gauging the U(1)B symmetry. This is equivalent to considering

SU(Nc) × U(1)B/ZN gauge group in the magnetic theory.3 In this case, the gauge group

SU(N) × U(1)B is completely broken at the meta-stable vacuum and then we expect to

have (semi-)local vortex strings from the broken U(1)B . This is the meta-stable string in

the SQCD with the gauged U(1)B . The moduli space of vacua M̃vac has the following

homotopy groups:

π0(M̃vac) = π1(M̃vac) = 0, π2(M̃vac) = Z. (2.14)

Therefore the gauged U(1) allows us to have global monopoles and sigma model strings

(lumps). The global monopoles are usually forbidden since they have infinite mass. The

sigma model strings correspond to the (semi-)local vortex strings in the magnetic theory.

When the gauge group is SO(Nc), the condition to have the ultra-violet SQCD is

Nf < (3/2)(Nc − 2). The gauge group of the dual magnetic theory is SO(N) with N =

2In this paper we do not consider the particle like solitons in the sigma model although π3(Mvac) is

not always trivial. The reasons are as follows. The Derrick’s theorem states that there are no stable sigma

model solitons whose co-dimension is more than 1. The theorem is valid with no higher derivative terms,

so a smooth sigma model soliton might exist if we include higher derivative corrections, like skyrmions.

However, this corresponds to going to higher energy regime beyond the non-linear sigma model limit. We

do not have any natural reason why one can abandon pesudo moduli and higher exited modes while keeping

the paticular higher derivatgive terms on the moduli fields. Even when one assumes such truncation, the

lifetime of the sigma model soliton is quite short compared to the lifetime of the meta-stable vacua. We

would like to thank K. Intriligator on this point.
3Since the gauge couplings of the SU(Nc) and the U(1)B are generically different, the SU(Nc)×U(1)B/ZN

is not equivalnet to U(N) although they are topologicaly equivalent. Note that ZN ∈ SU(N) and ZN ∈

U(1)B act in the same way on the matter fields in the magnetic theory.
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Nf − Nc + 4 ≥ 1. For the breaking of the gauge group, we have π1(SO(N)) = Z2 except

for the case of SO(2) ∼ U(1) where π1(SO(2)) = Z. For the moduli space, we find

π0(MSO) = 0,

π1(MSO) =

{
Z (for (Nf , Nc) = (2, 5))

0 (for the other cases)

π2(MSO) =

{
Z (for Nc = Nf + 2, except Nf = 4)

Z2 (for the other cases)
(2.15)

Thus, when N = 2 (or equivalently Nc = Nf + 2), the gauge group is SO(2) ∼ U(1) which

is broken, thus there are semilocal strings.4 For generic N we find Z2 solitonic strings.5

These strings are topological solitons, hence are meta-stable in the original SQCD.

In the rest of this section, first we shall obtain the moduli space of the meta-stable

vacua, with the un-gauged/gauged U(1)B symmetry for the SU(Nc) gauge groups. Then we

will derive the homotopy groups (2.13), (2.14) and (2.15). The case with the SO(Nc) will

be described briefly. In the next section, we study the brane realization of the (semi-)local

vortex strings for the case of the gauged U(1)B , and in section 4 we explicitly construct

classical solutions of the vortex strings.

2.3 Moduli space of vacua

The global symmetries of the magnetic theory of the SQCD are SU(Nf ) × U(1)B , where

the U(1)B symmetry acts on the overall phase of the field q. The local symmetry is SU(N).

We will deal with the case of the gauged U(1)B and SO(N) gauge group later.

The moduli space of the vacua is defined as a quotient space G/H, where G is the global

symmetry of the theory, and H is global symmetries which leave the vacuum invariant.

Obviously in our case

G = U(Nf ). (2.16)

Note that when we wrote the global symmetries as SU(Nf ) × U(1)B , we were not precise

concerning the discrete subgroup, and in fact U(Nf ) = (SU(Nf ) × U(1)B)/ZNf
is the

correct global symmetry of the theory.6 Let us look for the group H. Consider the following

elements of a subgroup S (U(N) × U(Nf − N)) of the SU(Nf ):

U =

(
ei θ

N gN

e
−i θ

Nf−N gNf−N

)
(2.17)

where we have defined gM ∈ SU(M). Consider the S[U(1) × U(1)] factor by choosing

gN = 1N and gNf−N = 1Nf−N ,

Ũ =

(
ei θ

N 1N

e
−i θ

Nf−N 1Nf−N

)
. (2.18)

4For the special case Nf = 4, see the next subsection.
5For the special case of (Nf , Nc) = (2, 5), sigma-model domain walls / global strings are possible.
6In the U(Nf ), elements exp[2πin/Nf ]1Nf

(n = 0, 1, 2, . . . , Nf − 1) belong to both the SU(Nf ) and the

U(1)B .
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We call this Ũ(1) symmetry. The other U(1)B symmetry together with this Ũ(1) act on

the vacuum as

µ (1N , 0) → µeiθB (1N , 0) Ũ † = µ
(
ei(θB− θ

N )1N , 0
)

. (2.19)

Therefore, when we have a relation

NθB = θ (2.20)

the vacuum is invariant. The combined symmetry is written as an element of U(Nf ),

U ′ =

(
1N

e
−i θ

Nf−N 1Nf−N

)
. (2.21)

We call this U ′(1) symmetry.

The element gN in the upper-left block in (2.17), when it acts on the vacuum, can be

absorbed by the SU(N) gauge symmetry which acts on q from the left hand side. Thus,

SU(N) is still a symmetry of the vacuum: this is the color-flavor locking. Furthermore,

the element gNf−N in the bottom-right block in (2.17) is just an isotropy for the vacuum.

Noting that together with the above U ′(1), this SU(Nf −N) is upgraded to form a U(Nf −
N), after considering the discrete subgroup ZNf−N properly. Therefore, in total, the

remaining global symmetry of the vacuum is

H = SU(N) × U(Nf − N). (2.22)

The moduli space of the vacua is

Mvac =
U(Nf )

SU(N) × U(Nf − N)
. (2.23)

Next, let us gauge the U(1)B symmetry. If we gauge U(1)B , the gauge group of the

magnetic theory becomes U(N).7 It is easy to see that the meta-stable vacua (2.7) are still

meta-stable vacua for the gauged U(1)B case. The total global symmetry G is in this case

G = SU(Nf ). The remaining global symmetry H is the same as before, but we can write

it as H = S[U(Nf − N) × U(N)] = SU(Nf − N) × SU(N) × Ũ(1), since U(1)B is gauged.

Consequently, the vacuum manifold is given by

M̃vac =
SU(Nf )

S[U(N) × U(Nf − N)]
=

SU(Nf )

SU(N) × SU(Nf − N) × Ũ(1)

= GrNf ,N (2.24)

which is a Grassmanian manifold.

We can find the moduli space Mvac easier by considering gauge invariant operators.

Here the gauge invariant operators are the meson M j
i and baryons bi1i2···iN , b̃i1i2···iN where

7Of course, this makes the original SQCD asymptotically non-free. However, as a cut-off theory it could

be useful for applications of the meta-stable vacua to cosmologies and phenomenological model construc-

tions.
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ik runs from 1 to Nf . Actually, the global symmetry U(Nf ) ∼ SU(Nf )×U(1)B was broken

by the gauge invariant operators b12···N ∼ µ ε12···N ∼ b̃12···N , the other components of the

b and b̃ vanish, and M j
i = 0. Therefore, we find again that the unbroken global symmetry

is SU(N) × U(Nf − N) and the moduli space Mvac is indeed (2.23), because the moduli

space is spanned by massless scalars while we know that the massless scalars in the meta-

stable vacua are only the Nambu-Goldstone modes associated with the global symmetry

breaking [2]. For the gauged U(1)B case, the global symmetry becomes SU(Nf ) and the

baryon b is not a gauge invariant operator, but bb̃ is. Thus, the unbroken global symmetry

group in this case is S(U(N) × U(Nf − N)) and the moduli space M̃vac is indeed given

by (2.24). In the limit of the vanishing U(1)B gauge coupling e → 0, the scalar fields which

are massive due to the super Higgs mechanism become massless, which change M̃vac to

Mvac. However, this is globally nontrivial because Mvac 6= M̃vac × (S1 of U(1)B).

Finally, we briefly mention the moduli space of the meta-stable vacua in the massive

SQCD with the SO(Nc) gauge group, under a condition 0 < Nc − 4 < Nf < 3
2(Nc − 2).

The gauge group of the magnetic theory is SO(N) (N = Nf − Nc + 4), and the moduli

space is

MSO =
SO(Nf )

SO(N) × SO(Nf − N)
. (2.25)

This is obtained in quite a similar way, since the structure of the superpotential is the

same. The SO(N) appearing in the denominator is from the gauge symmetry locked with

a part of the global symmetry, thus the vacua are in the color-flavor locking phase.

2.4 Homotopy groups

Homotopy groups directly indicate the existence of global (or sigma model) solitons, and

we here evaluate the homotopy groups of the vacuum manifold (2.23), (2.24) and (2.25).

First, we consider the case of the un-gauged U(1)B symmetry, (2.23). The homotopy

exact sequence [14] concerning the vacuum manifold Mvac = G/H is

0 = π2(G)
f1→ π2(G/H)

f2→ π1(H)
f3→ π1(G)

f4→ π1(G/H)
f5→ π0(H) = 0. (2.26)

Here we have used the fact that π2(G) = π2(U(Nf )) = 0 and π0(H) = π0(SU(N)×U(Nf −
N)) = 0. We know that π1(U(M)) = Z for any M ≥ 1, so the exact sequence is written as

0
f1→ π2(G/H)

f2→ Z
f3→ Z

f4→ π1(G/H)
f5→ 0. (2.27)

To obtain the homotopy groups πi(G/H) for seeing the solitons, it is necessary to know

how the map Z → Z is organized. First, let us see how the π1(G) = Z is generated. In

the G = U(Nf ), consider the following loop u(t) where t is parameterizing the loop as

0 ≤ t ≤ 1 and u(0) = u(1):

u(t) = e4πit/Nf 1Nf
∈ U(1)B (0 ≤ t ≤ 1/2) (2.28)

u(t) ∈ SU(Nf ) (1/2 ≤ t ≤ 1) (2.29)
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This is a non-trivial loop going from the origin, through eπi/Nf 1Nf
, back to the origin.

In the same manner, π1(H) = Z is generated by a loop u′(t) in the U(Nf − N), whose

definition is completely analogous to u(t). The map Z → Z is determined by the relation

between this u′(t) and u(t). Note that u′(t) (0 ≤ t ≤ 1/2) is decomposed into a product of

U(1)B and SU(Nf ) as

u′(t) =

(
1N

e4πit/(Nf−N)1Nf−N

)
= e4πt/Nf

(
e−4πit/N1N

e4πit/(Nf−N)1Nf−N

)
.

Looking at the U(1)B factor in the last expression, we find that the loop u′(t) reaches the

point e2πt/Nf at t = 1/2. This is the same point as u(1/2). Therefore, the loop u(t) rounds

once when the loop u′(t) rounds once: the map Z → Z is one-to-one and on-to.

Using this fact, we can obtain the homotopy groups of the quotient space, using

the exactness of the sequence. First, using Ker(f3)= 0, we have Im(f2)= 0, which im-

plies Ker(f2)= π2(G/H). Again the exactness means Ker(f2)=Im(f1)= 0, thus we ob-

tain π2(G/H) = 0. On the other hand, since Im(f3)= Z, we have Ker(f4)= Z. Hence

Im(f4)= 0, which leads to Ker(f5)= 0. However, f5 is the last element in the exact se-

quence, so π1(G/H) =Ker(f5). Thus we obtain π1(G/H) = 0. This is the proof of the

result (2.13).

The moduli space of the theory with the gauged U(1)B symmetry has a non-trivial

homotopy,

π2

(
SU(Nf )

SU(Nf − N) × SU(N) × Ũ(1)

)
= π1

(
SU(Nf − N) × SU(N) × Ũ(1)

)
= Z. (2.30)

We have used a well-known homotopy formula which is accessible in this case.

Finally, for the gauge group SO(Nc), we write the moduli space (2.25) as G/H where

G = SO(Nf )/SO(Nf −N) is a Stiefel manifold and H = SO(N). To obtain the homotopy

groups of G/H, we use the homotopy groups of G: πi<Nf−N (G) = 0, πNf−N (G) = Z (for

even Nf − N or N = 1), and πNf−N (G) = Z2 (for odd Nf − N and N > 1. Then, the

exact sequence of the following generic form

0 = πi(G) → πi(G/H) → πi−1(H) → πi−1(G) = 0 (2.31)

leads to a generic formula for homotopy groups of G/H (a similar derivation for O(Nf )

group can be found in [14]). But when i is large or Nf is small, the end points of the above

exact sequence do not vanish, and special treatment is required. The results are already

listed at the end of section 2.2. In addition, for example, one can find π3(G/H) = 0 for

N > 3 or Nf − N > 3.

3. Brane realization of vortex strings in meta-stable vacua

In this section, we show that classically there exist solitonic strings in the magnetic side of

the SQCD, by studying corresponding brane configurations.

In section 3.1, we first review the brane realization of the meta-stable vacua [3 – 5].

Then, in section 3.2, we review the brane realizations of the N = 2 supersymmetric gauge
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NS 1 2 3 – – – – 8 9

NS’ 1 2 3 4 5 – – – –

D6 1 2 3 – – – 7 8 9

D4 1 2 3 – – 6 – – –

Table 1: Hanany-Witten setup for the N = 1 supersymmetric gauge theory.
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(a) Electric theory (b) Magnetic theory

Figure 1: Brane configuration for massless SQCD.

theories and their solitonic strings. In fact, in section 3.3, we will find a useful analogy

between the solitonic strings in the supersymmetry-breaking meta-stable vacua and the

well-known BPS solitonic strings in supersymmetric vacua of the N = 2 supersymmet-

ric gauge theory. There we construct brane configurations corresponding to the solitonic

strings in the magnetic dual of the massive SQCD. Various properties of the solitonic strings

are predicted from string theory.

3.1 Review: brane realization of meta-stable vacua in SQCD

The brane configurations in the type IIA string theory can capture well the properties of

both the electric and the magnetic theories of the SQCD.8 The Hanany-Witten setup [9] for

the N = 1 SQCD [8] (see [10] for an extensive review) consists of two NS5-branes, Nf D6-

branes and Nc D4-branes (Nf D4-branes) whose world-volume orientations are summarized

in table 1. The SQCD is realized on the D4-brane worldvolume at low energy. The brane

configuration for the massless SQCD is depicted in figure 1. The electric theory is realized

in figure 1(a). The U(Nc) vector multiplet corresponds to the spectrum of a fundamental

string ending on the Nc D4-branes which are suspended between the NS5-brane and the

NS’5-brane, while the chiral multiplets Q and Q̃ come from a fundamental string stretched

between the Nc D4-branes and the Nf D4’-branes. The dual (magnetic) theory can be

obtained by exchanging the positions of NS5-brane and NS’5-brane, for example, on the

x6 axis, see figure 1(b). Hence, the U(N) vector multiplet appears from a fundamental

8The brane configurations are valid for analyzing the meta-stable vacua only in the limit gs → 0 [15].

In this paper, however, we will concentrate on classical solitons in the meta-stable vacua, thus brane

configurations are helpful.
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Figure 2: Brane configuration for massive SQCD.

string between the N = Nf − Nc D4-branes, and the dual quarks q and q̃ come from

fundamental strings between the D4-branes and the D4’-branes. Furthermore, the meson

field M appears from fundamental strings on the Nf D4’-branes, which corresponds to a

massless degree of freedom for the transverse motion of the D4’-branes for the x8 and the

x9 directions.

The brane configuration for the electric theory of the massive SQCD (the masses are

real) is obtained just by parallelly shifting the D4’-branes along the x4 axis away from the

D4-branes, as shown in figure 2(a). Minimum length of a fundamental string stretched

between the D4-branes and the D4’-branes is the distance between them. This non-zero

distance leads to nonzero masses for the quark fields Q and Q̃. Let us next turn to the dual

theory of the massive SQCD. The brane configuration of it can provide an intuitive and

good understanding of the dual theory [3 – 5]. We start with figure 1(b) and we lift the Nf

D6-branes parallelly upward along the x4 axis. Then the N(= Nf −Nc) D4-branes and the

same number of D4’-branes in figure 1(b) are joined together and pulled by the D6-branes,

then lifted upward. On the other hand, remaining Nc(= Nf −N) D4’-branes cannot make

a pair with any of the D4-branes, so they are still stretched between the NS5-brane and

the D6-branes, see figure 2(b) [3 – 5]. Obviously, the brane configuration in figure 2(b)

breaks the bulk supersymmetries completely, and it is nothing but the supersymmetry-

breaking meta-stable vacua. Comparing figure 1(b) and figure 2(b), the length of the

Nf − N(= Nc) D4-branes in the former longer than that in the latter. This difference is

regarded as the potential energy of the supersymmetry-breaking meta-stable vacua, and it

agrees with (2.8).

As described in the last of section 2.1, we may introduce various quark masses. In this

case, the position of the D6-branes in the x4-x5 plane is specified by mi. The situation

of the supersymmetry restoration at the vacuum, described in section 2.1, can be easily

understood in the brane configuration. When mN+1 = · · · = mNf
= 0, both the NS5-brane

and the Nc D6-branes sit at the origin of the x4-x5 plane, thus the Nc D4’-branes connecting

them are aligned parallel to the remaining N D4-branes. Thus the bulk supersymmetries

are not completely broken.
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Table 2: Hanany-Witten setup for the N = 2 U(N) gauge theory. The D2-brane is added to

describe the solitonic strings in the theory.

NS’ NS

Nf D4’Nf − Nc D4

Nf D6

7, 8, 9
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4, 5

NS’
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Nc D4’

Nf − Nc D4
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(a) vanishing FI term (b) non-zero FI term

Figure 3: Brane realization of the 4d N = 2 supersymmetric U(N) gauge theories.

3.2 Review: N = 2 supersymmetric gauge theory and vortex strings

In this subsection we review the brane configuration of BPS vortex strings in N = 2 non-

Abelian gauge theory [11] (see also [12] for brane configurations of vortices in Abelian gauge

theory). This in fact turns out to be quite helpful for constructing a brane configuration

of vortex strings in the supersymmetry-breaking meta-stable vacua in the next subsection.

Brane realization and field theory vacua. We start with the N = 2 Hanany-Witten

set up, whose brane orientations are summarized in table 2. We consider the N = 2 4d

supersymmetric U(N) gauge theory on N D4-branes suspended between a NS5-brane and a

NS’5-brane, see figure 3(a). The fields which appear in the gauge theory are hypermultiplets

including scalar components of dual quarks q and q̃, and a vector multiplet including a

complex scalar field Σ in the adjoint representation of the gauge group U(N). Here q

and q̃ appear as in the same way as the magnetic theory of the SQCD. The new field Σ

comes from fundamental-strings whose end points are attached on the N D4-branes and it

corresponds to transverse motion of the D4-branes along the x4 and x5 direction. On the

other hand, the meson field M in the magnetic theory of the SQCD does not appear here,

because the Nf D4’-branes cannot move freely in this situation.

We can turn on a Fayet-Iliopoulos (FI) parameter v2 while keeping the N = 2 super-

symmetries. This is necessary to have BPS solitonic strings. In the brane configuration,

the FI term is realized as a parallel transport of the NS5-brane in the space of x7, x8, x9.

As an example, we parallel-transport the NS5-brane along the x9 axis,9 see figure 3(b).

9The rotation in the x7, x8, x9 space corresponds in the field theory to the SU(2)R symmetry. Namely,
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The superpotential of this field theory is quite similar to that given in equation (2.2) of

the magnetic theory of the SQCD:

W = gTrc [qΣq̃] − v2TrcΣ. (3.1)

With this FI parameter v2, as is obvious in figure 3(b), the D4-branes cannot move

freely. This fact can be seen consistently in the field theory, by looking at the scalar

potentials

VF = Trc

{
g2

∣∣qq̃ − v21N

∣∣2 + |qΣ|2 + |q̃†Σ†|2
}

, (3.2)

VD = Trc

{
g2

4

(
qq† − q̃†q̃

)2
− 1

g2

[
Σ,Σ†

]2
}

. (3.3)

These scalar potentials are almost the same as those in the SQCD given in equations (2.4)

and (2.5). The only difference is the size of the field Σ (N ×N) and the field M (Nf ×Nf ),

and consequently the rank condition. The classical vacuum of this N = 2 model is in the

Higgs phase:

Σ = 0, qq† − q̃†q̃ = 0, qq̃ = v21Nc . (3.4)

There is no flat direction in Σ at the classical level on the contrary to the case of the

N = 1 SQCD. Furthermore, the Higgs branch is well-known to be a cotangent bundle over

a complex Grassmanian manifold

T ?GrNf ,N = T ?

[
SU(Nf )

SU(N) × SU(Nc) × Ũ(1)

]
. (3.5)

The base space Grassmanian is parameterized by q = q̃† similarly to the case of the N = 1

SQCD. In this case the rank condition is satisfied because the rank of qq̃ is the same as v21N ,

so that the vacuum energy vanishes. Thus the vacua maintain the full supersymmetries.

1/2 BPS solitonic strings. There are 1/2 BPS solitonic strings (vortex strings) in

this N = 2 theory. They are called semilocal non-Abelian vortex strings. The Abelian

version has been known for decades [13], while its non-Abelian extension of our concern

has been considered in [11] (see also [16 – 18]). The non-Abelian semilocal string is a natural

extension of the well-known Abrikosov-Nielsen-Olesen (ANO) vortex in the Abelian-Higgs

model. The 1/2 BPS equation for the vortex is

(D1 ± iD2)φ = 0, F12 ±
g2

2

(
2v2 − φφ†

)
= 0, (3.6)

where we have assumed that all the fields depend only on x1 and x2, and

q = q̃† ≡ φ√
2
, Σ = A0 = A3 = 0, (3.7)

the FI parameters are transformed as a triplet under the SU(2)R. In this paper, we assume that the

parallel-transport of the NS5-brane along the x7 axis corresponds to the FI D-term while that along x8, x9

axis to for the FI F -term.
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Figure 4: 1/2 BPS semilocal strings in N = 2 4d super Yang-Mills-Higgs system.

which are consistent with all the equations of motion. The tension (the energy per unit

length along x3) of the system is bounded from below by the topological charge k ∈
π1(U(N)) = Z, and the bound is saturated by any solution of the 1/2 BPS equations (3.6),

E = ∓2v2

∫
d2x F12 = 4v2π|k|. (3.8)

As mentioned before, the vacuum shows the color-flavor locking, namely the symmetry

of the vacuum is SU(N)c+f . When a minimal vortex sits in the vacuum, the symmetry is

spontaneously broken to S[U(N − 1)×U(1)], so the moduli space of the vortex includes in

particular an “orientational” moduli CPN−1, in addition to the position moduli C. This

C × CPN−1 is the total moduli space for the BPS non-Abelian strings with N = Nf ,

but the 1/2 BPS semilocal vortex strings (Nf > N) have additional moduli parameters

concerning the size of the vortices.

This non-Abelian semilocal string can be realized in the brane configuration, which

was found by Hanany and Tong [11]. The soliton with the co-dimension 2 (compared to the

D4-branes) is k D2-branes which are suspended between the NS’5-brane and the (Nf −Nc)

D4-branes, as shown in figure 4. The worldvolume of the D2-branes is along x0, x1 and x2,

as in the table 2. The tension of the D2-branes is proportional to the distance between the

NS5-brane and the NS’5-brane (along the x9 axis), namely the amount of the FI term 2v2.

This is consistent with the field theory result in equation (3.8).

A topological property of the moduli space for these 1/2 BPS non-Abelian semilocal

strings is captured from massless excitations of fundamental strings on k D2-branes, N

D4-branes and Nc D4’-branes [11]. Let us denote k by k matrix Z for expected zero modes

between D2-D2, k by N matrix ψ for those between D2-D4 and Nc by k matrix ψ̃ for those

between D2-D4’. Then the moduli space of the solitonic strings is given by the following

Kähler quotient:
{[

Z,Z†
]

+ ψψ† − ψ̃†ψ̃ ∝ 1N

}
/U(k). (3.9)

For a single vortex, Z is just a complex constant. Then, if we look at ψ̃ = 0 sector, this

quotient gives us the C × CPN−1 which is consistent with the above field theory result.
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NS 1 2 3 – – – – 8 9

NS’ 1 2 3 4 5 – – – –

D6 1 2 3 – – – 7 8 9

D4 1 2 3 – – 6 – – –

D2 – – 3 – – – 7 – –

Table 3: The Worldvolumes of the branes for the massless N = 1 SQCD and its dual. We added

the D2-brane which represents a vortex string.

The 1/2 BPS non-Abelian semilocal strings have three kinds of moduli parameters: (i)

positions (ii) orientations (iii) sizes. Roughly speaking, Z corresponds to the positions, ψ

to the orientations and ψ̃ to the sizes.

3.3 Brane realization of vortex strings in meta-stable vacua

We have seen that 1/2 BPS semilocal strings naturally appear in the N = 2 supersymmet-

ric gauge theory with the FI parameter, and their corresponding D-brane picture is well

understood. In this subsection, we apply the idea to the magnetic theory of the SQCD. We

deal with two cases: magnetic theory of (i) massless N = 1 SQCD with an analogous FI

term, and of (ii) massive N = 1 SQCD. We find D-branes corresponding to the semilocal

strings, which shows the existence of the solitonic strings in the theories.

1/2 BPS solitonic strings in magnetic theory of massless SQCD. The brane

configurations are quite useful to find out possible solitonic defects, as reviewed in the

previous subsection. Let us study what is a possible introduction of the D2-brane in the

brane configuration of the magnetic theory of the massless N = 1 SQCD, figure 1. It is

clear that we cannot attach a D2-brane in this brane configuration. But as is suggested

from the N = 2 example in the previous subsection, if we introduce a FI term, we obtain

a stable vortex string, as we shall see below.

In the previous N = 2 case, we have three candidates, x7, x8 and x9, as a possible

direction along which we can parallel-transport the NS’5-brane. In the present case of the

magnetic theory of the massless N = 1 SQCD, we have only the x7 direction (FI D-term)

for the transport to maintain the supersymmetries of the vacua. The worldvolumes for the

branes are summarized in table 3.

After turning on the FI D-term parameter (parallel-transporting the NS’5-brane in

the x7 direction), k D2-branes can stretch between the NS’5-brane and the Nc D4-branes,

see figure 5(a). This is a description of the electric side of the SQCD. In the magnetic side,

we put the D2-branes stretched between the NS5-brane and the (Nf − Nc) D4-branes, see

figure 5(b).10

Non-BPS solitonic strings in magnetic theory of massive SQCD. Let us consider

the possibility of the existence of the solitonic strings in the magnetic theory of the massive

10Field theoretical properties of the semilocal strings and relations to the brane configurations and to the

Seiberg dualities are studied in [19].
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Figure 5: Brane configurations for the 1/2 BPS semilocal strings in N = 1 SQCD.

NS
NS’

Nc D4’

Nf − Nc D4

Nf D6

4

6

8, 9

k D2

NS 1 2 3 – – – – 8 9

NS’ 1 2 3 4 5 – – – –

D6 1 2 3 – – – 7 8 9

D4 1 2 3 – – 6 – – –

D4’ 1 2 3 (4) – (6) – – –

D2 – – 3 4 – – – – –

Figure 6: Brane realization (D2-branes) of the solitonic strings in the meta-stable vacua.

N = 1 SQCD without the FI parameter, explained in section 2.1. The 1/2 BPS semilocal

strings in the N = 2 model required a non-vanishing FI term for them to exist. Instead,

as has been described, the SQCD has a non-zero “quark mass” µ2, which behaves in the

magnetic side quite similarly to the FI term. This “mass” term in fact supports the solitonic

string in the dual SQCD, as we will see in the following.

We can easily find a brane configuration for the solitonic string, by applying the idea

of [11]. In the brane realization of the magnetic theory provided by [3 – 5], we put a

D2-brane suspended between the NS5-brane and the (Nf − Nc) D4-branes. See figure 6.

Because the D2-brane tends to minimize its length, it is perpendicular to both the NS5-

brane and the D4-branes.

From the brane configuration, we can extract several properties of the solitonic strings.

All of those are found to be consistent with our field theory analyses which will be presented

in the next section.

• Tension of the string. The length of the D2-brane measures the tension. It is found
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Figure 7: Non-BPS solitonic strings in massive dual N = 1 SQCD

to be proportional to µ2, the quark mass in the original SQCD, since the length is

identical to the distance between the D6-branes and the NS5-brane in the x4 axis.

• Supersymmetries. The meta-stable vacua completely break supersymmetries by

themselves. This has been realized as the tilted Nc D4’-branes in the brane configura-

tion [3 – 5]. We have to stress that the semilocal strings should also break the super-

symmetries completely, since the Nf D6-branes along the directions 0123789 and the

D2-brane along 034 are incompatible with supersymmetries. So the solitonic string

in the supersymmetry-breaking meta-stable vacua are non-BPS (≡ supersymmetry-

breaking)11 semilocal strings.

• Existence of non-BPS strings in supersymmetry-preserving vacua. Before

proceeding to the field theory analysis, we study brane configurations of non-BPS soli-

tonic strings, not in the supersymmetry-breaking vacua, but in the supersymmetry-

preserving vacua, in the magnetic theory of the N = 1 massive SQCD. As reviewed

briefly at the end of section 2.1, if we replace the “mass” term µ2TrM in the superpo-

tential (2.2) by Tr[mM ] where m = diag(µ2, . . . , µ2, 0, . . . , 0), the resultant vacuum

becomes supersymmetric. The solitonic strings are again realized D2-branes between

Nf − Nc D4-branes and NS5-brane. It appears that the brane configuration pre-

serves some supersymmetries, but note that the D2-branes and the D6-branes are

still in conflict with any compatible supersymmetries. Thus the solitonic string in

this supersymmetric vacuum is again non-BPS.

The solitonic string in this vacuum is not a semilocal string but a non-Abelian string

with the orientational moduli CPN−1, because there is no global symmetry SU(Nf )

from the first place. The brane configuration in figure 7(a) is quite similar to that in

figure 4. However, properties of the solitonic strings, namely D2-branes suspended

D4-branes and NS5-brane, are not so similar: The solitonic strings in figure 4 are 1/2

BPS semilocal strings which have orientational moduli and size moduli, while those

in figure 7(a) are non-BPS non-Abelian strings which doesn’t have the size moduli.

11Note that in our terminology, “non-BPS” means supersymmetry-breaking, and not the saturation of

the Bogomol’nyi bound.
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To illustrate this distinction, we draw an N = 2 D-brane configuration figure 7(b)

which is much more similar to the brane configuration figure 7(a). This figure 7(b)

shows a massive Hanany-Tong setup in which the vacuum is not degenerate, since

the non-degenerate masses break SU(Nf ) down to SU(N) explicitly. So the solitonic

string in figure 7(b) is not a 1/2 BPS semilocal non-Abelian string but a 1/2 BPS

non-Abelian string without the size moduli.

• Existence of multi-tension strings. In general, we can put non-degenerate

“masses” m = diag(m1,m2, . . . ,mNf
). The corresponding D-brane configuration

is shown in figure 8. Stable vacua are those in which Nf − Nc horizontal D4-

branes connect the NS’5-brane and the Nf − Nc D6-branes associated with the

Nf − Nc large masses {m1, . . . ,mNf−Nc}. The remaining Nc D4’-branes are sus-

pended between the NS5-brane and the Nc D6-branes associated with the light masses

{mNf−Nc+1, . . . ,mNf−1,mNf
}. Obviously one can put the D2-branes between the

horizontal D4-branes and the NS5-brane. There are Nf − Nc kinds of D2-branes,

depending on which D4-brane (labeled by i = 1, . . . , Nf −Nc) the D2-brane ends on.

The tension of the solitonic string comes from the distance between the i-th D4-brane

and the NS5-brane, hence is proportional to mi.

In the next section, we will give explicit solutions of the solitonic strings in the magnetic

theory of the SQCD, and show that indeed these properties are equipped with the strings.

4. Vortex string solutions in meta-stable vacua

In this section, we explicitly construct the solitonic string solutions of the equations of

motion in the magnetic theory of the massive SQCD. We find that the resultant strings have

the properties expected from the brane configurations: the tensions, the supersymmetries,

and the various species of the strings.
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4.1 Classical solutions

The existence of the solution to the equations of motion can be seen by considering the

following field configurations

M = 0,
1√
2
(q + q̃†) ≡ φ,

1√
2
(q − q̃†) ≡ φ̃ = 0. (4.1)

Interestingly, this assumption leads to a system which is almost identical to that of the

semilocal strings. The only difference is the vacuum energy, as we will see shortly below: in

our case the vacuum energy is non-vanishing and thus all the supersymmetries are always

broken, while in the usual case of the BPS semilocal strings some supersymmetries are

preserved at the vacuum.

With the truncation (4.1), the Lagrangian takes the form12

L̃ = Trc

[
− 1

2g2
FµνFµν −DµφDµφ†

]
− |h2|

4
Trf

[(
φ†φ − 2µ21Nf

)2
]

, (4.3)

where φ is a complex matrix-valued field whose size is N by Nf . Here we gauged the U(1)B
symmetry and unify it with the SU(N) so that the full gauge symmetry becomes U(N),

i.e. we put the gauge coupling of the U(1)B to be equal to that of the SU(N). Note that

the U(1)B which we gauged corresponds to the original gauged baryonic U(1) symmetry

in the electric side and we took Seiberg’s duality only for SU(Nc). Unifying U(1)B gauge

coupling and SU(N) gauge coupling here is just for a convinience. We will consider the

generic case with non-coincident gauge couplings in the appendix. Note that the above

potential term can be written equivalently as

Ṽ = |h2µ4|(Nf − N) +
|h2|
4

Trc

[(
φφ† − 2µ21N

)2
]

. (4.4)

As we will show shortly, the system is identical to that of the non-Abelian semilocal strings

plus the additive cosmological constant, the first term in (4.4). Because of this cosmological

constant, all the supersymmetries are always broken, although the system is similar to that

of the semilocal strings. The equation of motion of the truncated model is

DµDµφ =
∂Ṽ

∂φ†
,

1

g2
DµFµν = − i

2

(
φDνφ† −Dνφφ†

)
, (4.5)

where µ, ν = 1, 2 for the vortex strings extending along the x3 axis. Notice that the

cosmological constant in (4.4) does not appear in the equation of motion. The equation of

motion for φ̃ is satisfied with φ̃ = 0.

This equation of motion (4.5) reduces to that for the well-known Abelian semilocal

strings when we choose Nf > N = 1, and their solutions were studied in detail [13]. We

12When we take g2 → ∞ and simultaneously |h| → ∞, this model becomes a non-linear sigma model

whose target space is

Mtarget =
n

φ†φ − 2µ2
1N

o

/ [SU(N) × U(1)B ] ' GrNf ,N . (4.2)

Note that in this limit we discard the infinite cosmological constant (Nf − N)|h2µ4| → ∞.
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can find a minimal string solution of the non-Abelian semilocal string (Nf > N ≥ 2) for the

equation (4.5) by embedding the U(1) semilocal string solution in the model of Nf −N +1

flavors as

F12 =




0
. . .

0

F ?
12




, φ =




√
2µ

. . . √
2µ

φ?
0 φ?

1 · · · φ?
Nf−N




, (4.6)

where we denoted F ?
12 and {φ?

a (a = 0, 1, . . . , Nf−N)} as solutions of the minimal winding

U(1) semilocal string. This is the solution of the solitonic strings in the supersymmetry-

breaking meta-stable vacua. As we mentioned in section 2.3, the vacuum has SU(N)c+f

color-flavor locking symmetry. This symmetry is broken down to U(1) × SU(N − 1) by

the single non-Abelian semilocal string (4.6), so that the solution has internal orientational

zero modes (Nambu-Goldstone modes) CPN−1 ' SU(N)/[SU(N − 1) × U(1)].

When embedding the U(1) semilocal solution to the non-Abelian gauge theory, we

have to choose a single U(1) gauge sub-sector in the U(N). This corresponds precisely to

choosing a single D4-brane (among N = Nf − Nc of them) on which the D2-brane should

end. The tension of the non-Abelian semilocal string is proportional to µ2. This is again

consistent with the D-brane picture, where the length of the D2-brane (proportional to µ2)

is determined only by the distance between the NS5-brane and the (Nf − Nc) D4-branes

and independent of the other parameters.

Now we consider a special case where the Higgs self-coupling h satisfies

g2 = |h|2, (4.7)

although this would not be always satisfied for the dual of SQCD. In this csae the non-

Abelian semilocal string saturates the Bogomol’nyi bound of the theory with (4.4) (the

tension is given by 4πµ2), though the supersymmetries are broken because of the cosmo-

logical constant. In this case the second order differential equation (4.5) reduces to the 1st

order differential equation (3.6) with replacing v2 with µ2. It is known that the minimal

BPS semilocal vortex has the size moduli in addition to the orientational moduli CPN−1.

Furthermore, any repulsive or attractive force does not appear between separated strings

due to the saturation, like the ordinary 1/2 BPS solitons. As a result the moduli space

of the non-Abelian semilocal string in the meta-stable SUSY breaking vacua is completely

the same as that for the 1/2 BPS non-Abelian semilocal string in N = 2 supersymmetric

vacua [11, 16, 17, 20].

We would like to stress that our non-Abelian semilocal string solutions are always

non-BPS (breaking all the supersymmetries) even for the case where the energy bound is

saturated (g2 = |h2|). One can easily show that the 1/2 BPS equation (3.6) is inconsistent

with the N = 1 super-transformation of the gaugino δελ = σµνεFµν + iεD with D ∼
qq†− q̃†q̃ = 0 in the selected sector (4.1). It is somehow surprising that the supersymmetry-

breaking semilocal string saturates the Bogomol’nyi energy bound when g2 = |h|2 and the
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non-BPS semilocal strings behaves as if they were 1/2 BPS semilocal strings.13 Actually

they have free moduli parameters of positions, internal orientations and sizes. From the

D-branes viewpoint this is not intuitive at all since the angle between the D2-branes and

D4’-branes is not the right angle.

Due to the saturation in the case where g2 = |h|2, the string is stable in the selected

sector (4.1). Later we will study the fluctuation orthogonal to the truncation (4.1), and

find that the string is stable against all the fluctuations when (4.7) is satisfied.

4.2 Stability of solitonic string

Let us study the stability of the ANO string in the magnetic theory of the massive SQCD,

which we found in the previous subsection. We will find that the vortex is stable for

g2 ≥ |h|2. (4.8)

It is known [13] that Abelian semilocal vortices are unstable for g2 < |h|2. In this

parameter region the strings can reduce their tension by fattening themselves (increasing

their widths). Therefore, any possible region of the parameter space for the ANO string to

be stable should be within (4.8). In our truncated theory with (4.1), this Abelian situation

corresponds to N = 1. For our general non-Abelian case, we can show that the non-

Abelian semilocal string is stable again for (4.8), as in the following. The solution (4.6) for

g2 > |h|2 has vanishing {φ?
1, . . . , φ

?
Nf−N}, thus we consider a fluctuation from this ANO

solution. Matrix elements of the scalar fluctuation are labeled as

φ =

(√
2µ1N−1 + δφI δφII δφIII

δφIV φ∗
0 + δφV δφVI

)
(4.9)

Substituting this and a similar decomposition of the gauge fields into the Lagrangian, it is

easy to show that the “semilocal sectors” δφIII and δφVI decouple from the others (which

are fluctuations of a non-Abelian local string with N = Nf ). This latter fluctuations are

expected to be stable for any g and h. δφV is found to be identical to the fluctuation of

the Abelian local vortex (ANO), thus is stable. The sector δφI couples to the vacuum

expectation value
√

2µ and is Higgsed to be massive and stable. A combination of δφII

and δφIV produces the orientational moduli which are normalizable, localized and massless

modes. The other combinations are massive and stable, through a Higgs mechanism, which

would be understood in a unitary gauge, for example. Our main concern is in the semilocal

sector. We find that δφIII does not have a potential term and thus is a massless bulk mode

which is non-normalizable. This is a Nambu-Goldstone mode associated with the global

symmetry breaking by the vacuum. δφVI has the same expression as the fluctuation of the

Abelian semilocal string, therefore we know that for g2 > |h|2 it is massive and stable, as

13Our non-BPS string is not a kind of the F -term vortex string in N = 1 theory [21, 22] which also

behaves as if it was a 1/2 BPS string though it doesn’t preserve the N = 1 supersymmetry. The F -term

string preserves 1/2 supersymmetry when it is embedded into an appropriate N = 2 theory. However, our

non-BPS strings cannot be simply embedded into any N = 2 model, partly because the scalar field M

is not an adjoint scalar field of the U(N). This may be also obvious from the viewpoint of the D-brane

configuration, see figure 6.
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mentioned above. For g2 = |h|2, this δφVI gives the massless moduli {δφ?
1, . . . , δφ

?
Nf−N} as

indicated in (4.6). In sum, the solution (4.6) is stable for (4.8) in the truncated model (4.1).

Second, we consider fluctuations orthogonal to the truncation (4.1). Fluctuation of

the field M does not provide any instability, because in the potential term (2.4) the field

M appears in a positive-semi-definite form. Thus we need to study the fluctuation of q

and q̃. We redefine the fields as

φ ≡ 1√
2
(q + q̃†), φ̃ ≡ 1√

2
(q − q̃†). (4.10)

(Previously we have put φ̃ = 0.) The φ̃ potential can be written, up to its quadratic order,

as

Trf

[
|µ2h2|φ̃†φ̃ +

|h|2
2

φ†φ̃φ̃†φ

]
+

1

4
(g2−|h|2) Trc

[(
φ̃φ† + φφ̃†

)2
]

. (4.11)

The term linear in φ̃ vanishes identically, and consequently there is no mixing between φ̃

and the fluctuation of φ. Since (4.11) is a sum of perfect squareds, the fluctuation is stable

when (4.8) is satisfied. Therefore we conclude that the ANO string is stable for g2 ≥ |h|2.
Irrespective of the values of the couplings, there exist massless fluctuations. The eigen

function of the fluctuation is given for example by

δφ(i,j) = φANO(x1, x2)f(i,j)(x
0, x3) (4.12)

where (i, j) labels the matrix elements, x3 is the direction along the embedded ANO string,

and φANO is the ANO vortex solution in the Abelian Higgs model. This is certainly

expected, since this is a Nambu-Goldstone mode associated with the spontaneous breaking

of the global symmetry SU(Nf ). If we rotate the embedded ANO solution a little bit by

the global symmetry SU(Nf ), then we obtain this massless fluctuation.

4.3 Multi-tension non-BPS vortex strings

Instead of choosing all the “mass” equal to each other (to be equal to µ2), we may choose

a superpotential W = −hTrf [mM ], as described in section 2.1. We align the mass eigen-

values as m = diag(m1, . . . ,mNf
) with m1 ≥ · · · ≥ mNf

≥ 0 so that the vacuum is stable

locally (see [3] for discussions on the vacuum stability from the brane configurations).

Obviously we find the embedding of the ANO string as before,

φ(1,1) = φANO(x1, x2), Aµ
(1,1) = (AANO)µ(x1, x2), the others = 0. (4.13)

Here the subscript means again the (i, j) component. For g2 = |h|2, the tension of this

ANO string is proportional to m1, as predicted from the brane configurations.

One can embed the string in one of the other sectors, by replacing the above (1, 1) by

(j, j) for j = 2, . . . , Nf −Nc. This is again obviously a solution to the equations of motion.

The ANO string has its tension ∝ mi, which is consistent with the brane configurations.

Thus we actually obtain multi-tension vortices.
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The analysis of the stability of the string is almost similar to the case of the semilocal

strings. For example, if we embed an ANO string in the (1, 1) component as in (4.13), we

find the fluctuation Lagrangian for φ(j,1) for j = 2, . . . , Nf as

−|DANO
µ φ(j,1)|2 −

|h|2
2

(
|φANO|2 − 2mj

)
|φ(j,1)|2. (4.14)

For the semilocal case m1 = · · · = mNf
= µ2, we know that this fluctuation is stable

for g2 ≥ |h|2. In the present case, the above fluctuation Lagrangian is obtained just by

replacing µ2 by mj. Since mj is smaller than m1, the tachyonic instability is now found

to be improved, and the situation is better for the stability. Thus for g2 ≥ |h|2 the ANO

solution is stable against this kind of fluctuations. For the fluctuations orthogonal to the

truncation (4.1), a similar computation shows that the potential is the same as (4.11) except

that we replace |µ|2 in the first term by the matrix m. The argument for the stability is the

same, and we find that the string is stable for g2 ≥ |h|2 against φ̃. Therefore, in summary,

we find that the ANO string embedded in (1, 1) sector is stable for g2 ≥ |h|2.
When mN+1 = · · · = mNf

= 0, the vacuum admits supersymmetries, and the cos-

mological constant vanishes. In the corresponding brane configuration, all the D4-branes

become parallel, which is a manifestation of the supersymmetry restoration. Let us con-

sider the embedding of the ANO string as before, in this supersymmetric vacuum. The

embedded solitonic string breaks the supersymmetries even for g2 = |h|2, similarly to the

case of the non-Abelian semilocal strings dealt with at the end of section 4.1. This is

consistent with what we have found in the brane configurations.

5. Conclusion and discussions

The vortex strings which we have found in this paper can be applied to various situations,

such as phenomenological model building and cosmologies. Since the meta-stable vacua

found in [2] provide us with a new path to break supersymmetries at low energy, the possible

existence of solitons in the vacua may affect any story on the vacua. We have found that

the U(Nc) and the SO(N) SQCD have vortex strings. The vortex strings in the U(Nc)

(and the SO(Nc) with Nf = Nc−2) are similar to the semilocal strings. The vortex strings

in general SO(Nc) are Z2 strings. The existence and the properties of the U(Nc) strings

have been found from brane configurations. This time again, stringy technique turned out

to be quite useful in finding field theoretical solutions and their properties.

Several discussions and comments are in order, which we hope to get back to in the

future.

• Implication to cosmologies. The vortex strings found in this paper can be thought

of as cosmic strings. One can argue that when the universe is cooling down, the

energy scale gets smaller than the typical scale determined by the Seiberg duality,

and if eventually the supersymmetry-breaking meta-stable vacua are chosen somehow,

the vortex strings may form then. It is noteworthy that, even though the vacua

is non-supersymmetric and consequently the cosmic string is non-BPS, when the
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6

k D2

NS’

NS

Nc D4’

Nf − Nc D4 Nf D6

NS’-NS: ∼ 1/g2 NS-D6 (x6): ∼ 1/h2

NS-D6 (x4): ∼ µ24

Figure 9: The relation between the field theory couplings and locations of the branes.

gauge coupling g is equal to the scalar self coupling |h|, the solution itself is the

same as the BPS vortex strings. Therefore one can use various results on the BPS

vortex strings found in particular in the moduli matrix formalism [20] (see [23]).

For example, reconnection probability of cosmic strings is important for evaluating

number density of the cosmic strings and consequently possible observation of them.

The cosmic strings found in this paper with g = |h| provides an analytic study of the

reconnection of cosmic strings in a non-supersymmetric background, which is quite

interesting.

• Renormalization group flow and stability of the strings. The stability analysis of

section 4 has been done at the tree level of the magnetic theory. There we have

found that for g ≥ |h| the string is stable. To argue the stability in more realistic

situations, one needs to consider quantum effects, including the renormalization group

flow of the couplings. It is important to know if the stability condition g ≥ |h| is

satisfied or not at the energy scale where the classical soliton solutions are reliable.

The stability depends on the beta functions and the precise values of the coupling

constants at some energy scale. However, it is difficult to determine the Yukawa

coupling h precisely, though we know it is O(1) at the typical energy scale appearing

in the Seiberg duality.

• Prediction of the stability from brane configurations. As studied in section 4, the

vortex string is classically stable for g ≥ |h|. It is interesting if this condition can

be seen in the brane configurations. The couplings g and h can be interpreted [5]

as the distances between D-branes and NS5(NS’5)-branes (at least for the massless

SQCD), as shown in figure 9. The distance between NS5-NS’5 along the x6 axis

corresponds to the gauge coupling as ∼ 1/g2, that between NS5-D6 along the x6 axis

to ∼ 1/|h|2 and NS5-D6 along the x4 axis to the “mass” ∼ µ2. When the distance

between NS5-NS’5 is smaller than the distance NS5-D6 along the x6 axis, we have

g2 > |h|2, so the field theory results shows that the ANO string (the semilocal string

with vanishing width) stably exists there. When the distance between NS5-NS’5 is

smaller than the distance NS5-D6 along the x6 axis, we have g2 < |h|2 so any string
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solution does not exist in field theory. The question is if one can read these stability

information purely in the brane configuration. Our tentative conclusion here is that

we can read the tendency of the instability, but the actual relation g ≥ |h| is difficult

to be seen, as is explained below.

The moduli space of the solitonic string should be seen along the argument given

by Hanany and Tong [11], as a low energy field theory on the D2-brane. As seen in

section 3.2, for the semilocal strings in the N = 2 gauge theory, massless excitations

on the D2-brane came from strings in the following three sectors: (i) Z from D2-D2,

(ii) ψ from D2-D4 and (iii) ψ̃ from D4’-D2 in figure 4. (i) is relevant for the transverse

location of the string, (ii) is for the orientational moduli, and (iii) is for the width

of the string. Apparently the instability of the semilocal string should be related to

(iii).

Suppose that NS5-brane is closer to the D6-branes, compared to the distance to

the NS’5-brane. As can be found in figure 6 or in figure 9, the D2-D4’ string is

naively expected to become tachyonic, since the angle between the D2-brane and the

D4’-brane is not the right angle. Consequently, the solitonic string is expected to

be unstable against the change of the width. This is consistent with the field theory

analysis for g < |h|. When one moves the NS5-brane toward the NS’5-brane in the x6

direction, the angle becomes closer to the right angle, thus the tachyonic instability

is improved. This is again consistent with the field theory analysis, since g/|h| is

getting larger.

However, a strange discrepancy between the D-brane picture and the field theory

analysis appears when one continues to make the NS5-brane approach the NS’5-

brane. The angle is still less than the right angle and thus the D2-D4’ string seems to

be tachyonic, while in the field theory analysis the vortex becomes stable. This tells

us that the angle is not directly corresponding to the mass of the moduli parameter,

somehow, although in the N = 2 case [11] this has been assumed even in the presence

of the NS5-brane and it worked. Our situation breaks supersymmetries, that might

be a reason why it does not work now.

A similar argument can apply for the case of multi-tension strings found in sec-

tion 4.3. We have found in (4.14) that the string is more stable for smaller mj.

This phenomenon is compatible with the brane configuration. Now the D2-brane is

ending on the D4-brane whose position in the x4-x5 plane is given by the complex

parameter m1. When other mass parameters |mi| (i = N + 1, . . . , Nf ) are smaller

than this |m1|, the angle between the D2-brane and one of the D4-branes labeled

by i = N + 1, . . . , Nf is closer to the right angle, thus the instability of the D2-

brane caused by the tachyonic strings connecting the D2-brane and the D4-branes

is smaller. However, again the problem of vanishing instability still remains in the

brane story.
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A. ANO like vortex in the SU(N) × U(1)B gauge theory

In this appendix, we construct ANO like vortex in the magnetic theory where the SU(N)

gauge coupling g and the U(1)B gauge coupling e are different. Here we consider the field

configuration (4.1) only and then the the equations of motion is

DµDµφ =
∂Ṽ

∂φ†
, (A.1)

1

g2
[DµFµν ]SU(N) = − i

2

[(
φDνφ

† −Dνφφ†
)]SU(N)

, (A.2)

1

e2
[DµFµν ]U(1) = − i

2

[(
φDνφ

† −Dνφφ†
)]U(1)

, (A.3)

where [· · · ]SU(N) and [· · · ]U(1) means the traceless part and the trace part of the N × N

matrix, respectively. It is easy to see that the solution of the equations of motion in this

restricted configuration space is also the solution in the full configuration space. Here we

take the following axial ansatz for the solution (see [16, 24]):

A2 − iA1 =
n

r




b(r)
. . .

b(r)

a(r)




eiθ, φ =




v(r)
. . .

v(r)

u(r)einθ 0 · · · 0




, (A.4)

where n is an integer and all the other components of Aµ are zero. Then the equations of

motion become

u′′ +
u′

r
− n2 (1 − a)2

r2
u =

|h|2
2

(u2 − 2µ2)u,

v′′ +
v′

r
− n2 b2

r2
v =

|h|2
2

(v2 − 2µ2)v,
(

N − 1

g2
+

1

e2

)(
a′′ − a′

r

)
+

(
1

e2
− 1

g2

)
(N − 1)

(
b′′ − b′

r

)
= −N(1 − a)u2,

(
1

g2
+

N − 1

e2

)(
b′′ − b′

r

)
+

(
1

e2
− 1

g2

)(
a′′ − a′

r

)
= Nbv2, (A.5)
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where a′ = d
dra(r) and so on. The boundary conditions at the origin should be

a(0) = b(0) = u(0) = v′(0) = 0 (A.6)

because φ, ∂µφ and Fµν are regular at the origin. Actually,

a(r) = O(r2), b(r) = O(r2), u(r) = O(rn), v′(r) = O(r1), (A.7)

are consistent with (A.5). The boundary conditions at r = ∞ should be

a(∞) = 1, b(∞) = 0, u(∞) = v(∞) =
√

2µ, (A.8)

which is also consistent with (A.5). Then, with these eight consistent boundary conditions

we can solve (A.5) in principle as in the case of the simple ANO vortex though we do not

carry out it here. Therefore we expect (A.4) is the vortex solution with n charge. Note

that

π1

(
SU(N) × U(1)B

ZN

)
= Z (A.9)

and the vortex with the minimal charge winds the U(1)B 1/N times.

Finally, we comment on the stability of the solutions. If |e| > |h| these solutions is

expected to be stable as in the case e = g. A more complete analysis of the stability is

desired, but, we will leave it as a future problem.
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